BUILDERS FOR CLIMATE ACTION

NEHERS webinar, 2020

Jacob Deva Racusin, New Frameworks Chris Magwood, Builders for Climate Action

How much do buildings contribute to **CLIMATE CHANGE**?

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Ignoring materials is ignoring almost HALF THE PROBLEM!

Time Value of Carbon

Definition of Terms

WE CAN'T "NET ZERO" OUR WAY OUT OF THIS !

Definition of Terms

Net Zero Energy

GJ or kWh

GJ or kWh x CO₂e

Net Zero Carbon

Material Embodied Carbon kgCO₂e/m²

EXTRACTION + TRANSPORTATION + MANUFACTURING

"Cradle to Gate" Emissions

What do you want to understand? Recycling Raw Material Extraction and/or It is critical to be clear about the & Processing **Disposal** of Recovered impact categories that you want Materials to understand. Manufacturing Demolition of of Building Building at Materials When comparing studies, be End of Life sure to know what impact categories are being examined and the underlying assumptions Transportatio Refurbishmen used for each. n to t and Reuse Construction of Building Site "Material" emissions represent 60-90% of full life cycle Operational Utilization in Use of Construction emissions Buildings of Building (including its occupants)

Define your scope

Biogenic Materials + Carbon Sink/Carbon Storage

Definition of Terms

During photosynthesis, plants capture gaseous carbon from the atmosphere. That carbon is stored in the plants themselves, as well as in the soil.

Carbon Storing Materials

Many options for carbon storing materials already exist...

Some are already common building materials.

Some have seen limited but successful use.

Others are in the R&D stage.

Single Family Home

Multi-unit Building

Total Up-front embodied carbon emissions:

expressed as kilograms of CO₂ equivalent per square meter of floor area (kgCO₂ e/m^2)

Material Embodied Carbon Comparison

METHODOLOGY

- Eight examples of two types of common low-rise building
- Using Global Warming Potential (GWP) figures from an Environmental Product Declarations (EPDs)
- Over 350 materials modelled
- Four representative examples:
 - High
 - Typical
 - Best Conventional
 - Best Possible

Concentrated on the "materials" emissions from the product stage, A1-A3.

Typically, these represent 60-90% of the total life cycle emissions from building materials.

Materials emissions

Product			But this does not mean we should ignore the other impact categories.													
	Transport	Manufacturing	es and modules (MND = module not declared; MNR = module not relevant)													
Raw material supply			Construction process		Use					End of life				Beyond the system boundary		
			Transport	Installation process	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Re-use, recovery and recycling potential
			A4	A5	B1	B2	B3	Β4	В5	B6	Β7	C1	C2	C3	C4	D
A1	A2	A3	Х	Х	MNR	MNR	MNR	MNR	MNR	MNR	MNR	MNR	Х	Х	Х	Х
Y	Y	Y	1													

Life Cycle Assessment – Product

Impact category	Unit	Total	Raw materials	Manufacturing	Transport	Installation, maintenance	End of life
Ozone	kg CFC-11						
depletion	eq	6.71E-04	6.71E-04	0	0	0	0
Global warming	kg CO2 eq	9.53E+01	9.03E+00	2.54E+01	1.90E-01	2.72E+01	3.33E+01
Smog	kg O3 eq	1.98E-01	3.38E-01	2.30E-02	3.50E-02	0	2.00E-03
Acidification	mol H+ eq	9.98E-01	7.48E-01	1.72E-01	6.50E-02	0	3.00E-03
Eutrophication	kg N eq	2.72E-03	1.85E-03	6.70E-04	1.10E-04	0	7.00E-05
Water use	kg	5.45E+00	1.45E+00	4.00E+00	0	0	0
Non-hazardous waste	kg	7.99E-01	1.60E-02	6.00E-03	0	0	7.77E-01
Hazardous waste	kg	2.70E-03	2.70E-03	0	0	0	0
Waste to energy	kg	7.80E-05	0	7.80E-05	0	0	0
Primary Energy	MJ	8.88E+01	7.48E+01	1.06E+01	3.20E+00	0	2.20E-01

Reading EPDs

Mineral wool = 1.335 kgCO2e

Table 4: Life cycle impact category results per functional unit (TRACI 2.0)

impact Category	Units	Raw Materials	Production	nonsport	Installation	End-of-Life	Total
Global Warming	kg CO₂ eq	6.47E-02	1.27E+00	334E-02	1.44E-02	4.03E-02	1.42E+00
Acidification	kg mol H[*] eq	2.21E-02	6.97E-01	2.33E-03	4.72E-03	5.92E-03	7.32E-01
Eutrophication	kg N eq	1.89E-05	9.93E-05	1.58E-06	1.53E-06	5.03E-06	1.26E-04
Smog Creation	kg O3 eq	9.65E-03	5.20E-02	7.26E-04	6.51E-04	2.27E-03	6.53E-02
Ozone Depletion	kg CFC-11 eq	1.02E-09	1.47E-08	7.66E-11	9.67E-10	1.45E-10	1.69E-08
Waste to Landfill	kg	1.04E-05	3.65E-01	-	-	1.11E+00	1.47E+00
Metered Water	L	-	4.52E-01	-	-	-	4.52E-01
Primary Energy	MJ	1.00E+00	1.17E+01	4.74E-01	2.25E-01	4.46E-01	1.39E+01

Total 2017 U.S. low-rise construction:

241 MILLION M2

Business-as-usual will result in massive annual up-front emissions from materials.

Carbon-storing buildings can eliminate all material emissions and can result in meaningful carbon drawdown.

Straw acoustic panels

Modcell straw SIPs

Yes, we need to learn to build with

2.16 billion tonnes
of grain straw annually =
8 billion tonnes of CO₂ drawdown =
All transportation GHG emissions!

Can replace all insulation materials and still leave 20% to return to soils.

Products are already being made.

BIOGENIC MATERIALS!

Formaldehydefree straw panels

VestaEco Straw blocks and sheets

ISO-Stroh blown stray insulation

Endeavour straw SIPs

Occupant health & safety

No RED LIST chemicals No toxic manufacturing

Local sourcing

Agricultural by-products Forestry residues Municipal recycling resources

Regional manufacturing

Small-medium sized facilities Local jobs

Reduced waste

No RED LIST chemicals Biodegradable

Stacked benefits of biogenic materials

Global warming potential

Eutrophication

Ozone depletion

Acidification

Depletion of abiotic resources

Photochemical ozone creation

Depletion of fossil fuels

COMBINED UP-FRONT & OPERATIONAL CARBON EMISSIONS

Natural gas heating,

Toronto, 2020-2050

Operational carbon comparison

Minimum 83 tonne reduction immediately

Natural gas heating,

Toronto, 2020-2050

Operational carbon comparison

Air source heat pump,

Toronto, 2020-2050

Operational carbon comparison

Code minimum outperforms "net zero"

New way to DEFINE BUILDING PERFORMANCE

Operational Carbon Emissions

ENERGY USE INTENSITY

ENERGY SOURCE EMISSIONS Up-Front Embodied Carbon Emissions

Builders for Climate Action and Douro-Dummer Township incentive program.

\$10,000 rebate to reduce 225kg/m² or 50 tonnes per 2,000 square foot house!

Zero House Prefab, modular, net zero design

Design: Ryerson University & Endeavour Centre 100m² single unit two-bedroom Designed to be one unit in a 16-unit development

CASE STUDIES

25 tonnes net carbon storage in a single unit 400 tonnes storage potential in 16-unit development

Offices & Meeting Hall Urban infill, net-positive design

Design: Endeavour Centre 225m² three offices, large meeting room, staff room

CASE STUDIES

81 tonnes net carbon storage

E.T.F.O. Trillium Lakelands Elementary Teachers' Local

Energy: 105% on site generation of solar electricity 0.6 ACH/50 air tightness

- There is a straightforward path to achieve real zero carbon buildings
- There are reasonable policy tools to achieve set targets
- We just need the will to do this

www.newframeworks.com

www.buildersforclimateaction.org

www.endeavourcentre.org